The number of days more than the complete weeks are called odd days in a given period.
1 ordinary year = 365 days = (52 weeks + 1 day)
Hence the number of odd days in 1 ordinary year= 1.
1 leap year = 366 days = (52 weeks + 2 days)
Hence the number of odd days in 1 leap year= 2.
100 years = (76 ordinary years + 24 leap years )
= (76 x 1 + 24 x 2) odd days = 124 odd days.
=> (17 weeks + 5 days)
≡ 5 odd days.
Hence the number of odd days in 100 years = 5.
Number of odd days—->Day of the week
==>0—->Sunday
==>1—->Monday
==>2—->Tuesday
==>3—->Wednesday
==>4—->Thursday
==>5—->Friday
==>6—->Saturday
The last day of a century cannot be Tuesday or Thursday or Saturday.
because 100 century consists of 5 odd days, which means Friday is the last day.
200 century consists of 3 odd days, which means Wednesday is the last day.
300 century consists of 1 odd day, which means Monday is the last day.
400 century doesn’t consist of any odd day.
the cycle continues, hence proof.
1995 is an ordinary year, it has 1 odd day. So, the first day of 1996 will be one day beyond Sunday, i.e. it will be Monday.
The number of days more than the complete weeks are called odd days in a given period.
1 ordinary year ≡ 365 days ≡ (52 weeks + 1 day)
Hence the number of odd days in 1 ordinary year= 1.
1 leap year ≡ 366 days ≡ (52 weeks + 2 days)
Hence the number of odd days in 1 leap year= 2.
100 years ≡ (76 ordinary years + 24 leap years )
= (76 x 1 + 24 x 2) odd days = 124 odd days.
=> (17 weeks + 5 days)
≡ 5 odd days.
Hence the number of odd days in 100 years = 5.
Number of odd days—->Day of the week
==>0—->Sunday
==>1—->Monday
==>2—->Tuesday
==>3—->Wednesday
==>4—->Thursday
==>5—->Friday
==>6—->Saturday
The last day of a century cannot be Tuesday or Thursday or Saturday.
because 100 century consists of 5 odd days, which means Friday is the last day.
200 century consists of 3 odd days, which means Wednesday is the last day.
300 century consists of 1 odd day, which means Monday is the last day.
400 century doesn’t consist of any odd day.
the cycle continues, hence proof.
1995 is an ordinary year, it has 1 odd day. So, the first day of 1996 will be one day beyond Sunday, i.e. it will be Monday.
पूर्ण सप्ताह से अधिक दिनों की संख्या को किसी निश्चित अवधि में विषम दिन कहा जाता है।
1 सामान्य वर्ष ordinary 365 दिन ≡ (52 सप्ताह + 1 दिन)
इसलिए 1 साधारण वर्ष = 1 में विषम दिनों की संख्या।
1 लीप वर्ष ≡ 366 दिन ≡ (52 सप्ताह + 2 दिन)
इसलिए 1 लीप वर्ष = 2 में विषम दिनों की संख्या।
100 वर्ष 76 (76 साधारण वर्ष + 24 लीप वर्ष)
= (76 x 1 + 24 x 2) विषम दिन = 124 विषम दिन।
=> (17 सप्ताह + 5 दिन)
Days 5 विषम दिन।
इसलिए 100 वर्षों में विषम दिनों की संख्या = 5।
विषम दिनों की संख्या -> सप्ताह का दिन
==> 0 -> रविवार
==> 1 -> सोमवार
==> 2 -> मंगलवार
==> 3 -> बुधवार
==> 4 -> गुरुवार
==> 5 -> शुक्रवार
==> 6 -> शनिवार
किसी सदी का अंतिम दिन मंगलवार या गुरुवार या शनिवार नहीं हो सकता।
क्योंकि 100 शताब्दी में 5 विषम दिन होते हैं, जिसका अर्थ है कि शुक्रवार अंतिम दिन है।
200 शताब्दी में 3 विषम दिन होते हैं, जिसका अर्थ है कि बुधवार अंतिम दिन है।
300 शताब्दी में 1 विषम दिन होते हैं, जिसका अर्थ है कि सोमवार अंतिम दिन है।
400 सदी किसी भी विषम दिन से युक्त नहीं है।
चक्र जारी है, इसलिए प्रमाण है।
1995 एक सामान्य वर्ष है, इसमें 1 विषम दिन है। तो, 1996 का पहला दिन रविवार से परे एक दिन होगा, यानी यह सोमवार होगा।
The number of days more than the complete weeks are called odd days in a given period.
1 ordinary year = 365 days = (52 weeks + 1 day)
Hence the number of odd days in 1 ordinary year= 1.
1 leap year = 366 days = (52 weeks + 2 days)
Hence the number of odd days in 1 leap year= 2.
100 years = (76 ordinary years + 24 leap years )
= (76 x 1 + 24 x 2) odd days = 124 odd days.
=> (17 weeks + 5 days)
≡ 5 odd days.
Hence the number of odd days in 100 years = 5.
Number of odd days—->Day of the week
==>0—->Sunday
==>1—->Monday
==>2—->Tuesday
==>3—->Wednesday
==>4—->Thursday
==>5—->Friday
==>6—->Saturday
The last day of a century cannot be Tuesday or Thursday or Saturday.
because 100 century consists of 5 odd days, which means Friday is the last day.
200 century consists of 3 odd days, which means Wednesday is the last day.
300 century consists of 1 odd day, which means Monday is the last day.
400 century doesn’t consist of any odd day.
the cycle continues, hence proof.
1995 is an ordinary year, it has 1 odd day. So, the first day of 1996 will be one day beyond Sunday, i.e. it will be Monday.
ALL
how can l learn all questions
how
hey can u please
The number of days more than the complete weeks are called odd days in a given period.
1 ordinary year ≡ 365 days ≡ (52 weeks + 1 day)
Hence the number of odd days in 1 ordinary year= 1.
1 leap year ≡ 366 days ≡ (52 weeks + 2 days)
Hence the number of odd days in 1 leap year= 2.
100 years ≡ (76 ordinary years + 24 leap years )
= (76 x 1 + 24 x 2) odd days = 124 odd days.
=> (17 weeks + 5 days)
≡ 5 odd days.
Hence the number of odd days in 100 years = 5.
Number of odd days—->Day of the week
==>0—->Sunday
==>1—->Monday
==>2—->Tuesday
==>3—->Wednesday
==>4—->Thursday
==>5—->Friday
==>6—->Saturday
The last day of a century cannot be Tuesday or Thursday or Saturday.
because 100 century consists of 5 odd days, which means Friday is the last day.
200 century consists of 3 odd days, which means Wednesday is the last day.
300 century consists of 1 odd day, which means Monday is the last day.
400 century doesn’t consist of any odd day.
the cycle continues, hence proof.
1995 is an ordinary year, it has 1 odd day. So, the first day of 1996 will be one day beyond Sunday, i.e. it will be Monday.
what is the ans of this question
plz explain in hindii
plz explain in Hindi
पूर्ण सप्ताह से अधिक दिनों की संख्या को किसी निश्चित अवधि में विषम दिन कहा जाता है।
1 सामान्य वर्ष ordinary 365 दिन ≡ (52 सप्ताह + 1 दिन)
इसलिए 1 साधारण वर्ष = 1 में विषम दिनों की संख्या।
1 लीप वर्ष ≡ 366 दिन ≡ (52 सप्ताह + 2 दिन)
इसलिए 1 लीप वर्ष = 2 में विषम दिनों की संख्या।
100 वर्ष 76 (76 साधारण वर्ष + 24 लीप वर्ष)
= (76 x 1 + 24 x 2) विषम दिन = 124 विषम दिन।
=> (17 सप्ताह + 5 दिन)
Days 5 विषम दिन।
इसलिए 100 वर्षों में विषम दिनों की संख्या = 5।
विषम दिनों की संख्या -> सप्ताह का दिन
==> 0 -> रविवार
==> 1 -> सोमवार
==> 2 -> मंगलवार
==> 3 -> बुधवार
==> 4 -> गुरुवार
==> 5 -> शुक्रवार
==> 6 -> शनिवार
किसी सदी का अंतिम दिन मंगलवार या गुरुवार या शनिवार नहीं हो सकता।
क्योंकि 100 शताब्दी में 5 विषम दिन होते हैं, जिसका अर्थ है कि शुक्रवार अंतिम दिन है।
200 शताब्दी में 3 विषम दिन होते हैं, जिसका अर्थ है कि बुधवार अंतिम दिन है।
300 शताब्दी में 1 विषम दिन होते हैं, जिसका अर्थ है कि सोमवार अंतिम दिन है।
400 सदी किसी भी विषम दिन से युक्त नहीं है।
चक्र जारी है, इसलिए प्रमाण है।
1995 एक सामान्य वर्ष है, इसमें 1 विषम दिन है। तो, 1996 का पहला दिन रविवार से परे एक दिन होगा, यानी यह सोमवार होगा।
how to predict the day? help.
The number of days more than the complete weeks are called odd days in a given period.
1 ordinary year = 365 days = (52 weeks + 1 day)
Hence the number of odd days in 1 ordinary year= 1.
1 leap year = 366 days = (52 weeks + 2 days)
Hence the number of odd days in 1 leap year= 2.
100 years = (76 ordinary years + 24 leap years )
= (76 x 1 + 24 x 2) odd days = 124 odd days.
=> (17 weeks + 5 days)
≡ 5 odd days.
Hence the number of odd days in 100 years = 5.
Number of odd days—->Day of the week
==>0—->Sunday
==>1—->Monday
==>2—->Tuesday
==>3—->Wednesday
==>4—->Thursday
==>5—->Friday
==>6—->Saturday
The last day of a century cannot be Tuesday or Thursday or Saturday.
because 100 century consists of 5 odd days, which means Friday is the last day.
200 century consists of 3 odd days, which means Wednesday is the last day.
300 century consists of 1 odd day, which means Monday is the last day.
400 century doesn’t consist of any odd day.
the cycle continues, hence proof.
1995 is an ordinary year, it has 1 odd day. So, the first day of 1996 will be one day beyond Sunday, i.e. it will be Monday.